Microeconomics

 WS 2006/07
Harald Grethe

Department of International Agricultural Trade and Development
Sheets 1: Chapter 3, Preference and Utility

Outline

Part II: Choice and Demand

1. Preference and Utility

- The concept of a consistent utility order ("axioms of rational choice")
- Indifference curves (graphical representation of utility functions in two-dimensional space)
- Utility functions

2. Utility Maximization and Choice
3. Income and Substitution Effects
4. Demand Relationships among Goods

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Axioms of Rational Choice

- "Axioms": basic assumptions which are considered to require no proof as they are obvious
- 3 axioms
- Completeness
- Transitivity
- (Continuity) technical assumption

Axioms of Rational Choice

- Completeness
- $\mathrm{A}>\mathrm{B}(\mathrm{A}$ is preferred to B$)$
- or
- $\mathrm{B}>\mathrm{A}(\mathrm{B}$ is preferred to A$)$
- or
- $\mathrm{A} \approx \mathrm{B}$ (A and B are equally attractive)
- Completeness: for each potential choice exactly one of the three is true.
- Plausible?

Axioms of Rational Choice

- Transitivity
- If A > B
- and
- $\mathrm{B}>\mathrm{C}$
- then
- $\mathrm{A}>\mathrm{C}$
- Plausible?
- Could you think about other situations?

Utility

- As a result of completeness and transitivity people can rank all possible situations in order from the least desirable to the most
- And then attach the term "utility" to this ranking
- With a higher utility representing a higher desirability
- And a lower utility representing a lower desirability
- We can now attach an arbitrary set of numbers to such an utility ranking which accurately reflects the order

Utility

- For $\mathrm{A}>\mathrm{B}>\mathrm{C}$
- For example:
- $\mathrm{U}(\mathrm{A})=10, \mathrm{U}(\mathrm{B})=5, \mathrm{U}(\mathrm{C})=1$
- Or:
- $\mathrm{U}(\mathrm{A})=1000, \mathrm{U}(\mathrm{B})=100, \mathrm{U}(\mathrm{C})=1$
- Only the order matters, nothing can be said about the distance between different situations
- An "ordinal" utility order

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Utility

- Alternatively, a cardinal utility order allows for statements such as $U(A)=2 U(B)$
- A cardinal utility order expressed mathematically:
- Any cardinal utility ranking (U) can be replaced by any transformation $\mathrm{F}(\mathrm{U})$
- If $F(U)$ is a linearly increasing function
- Wenn $F(U)$ eine linear steigende Funktion ist
- In other words: if $F^{\prime}(U)>0$ and constant for all U
- Example:
$\square F(U)=2 U ; F^{\prime}(U)=2$
- Real world examples for cardinal and ordinal orders?

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Utility

- An ordinal utility order expressed mathematically:
- Any numerical utility ranking (U) can be replaced by any transformation $\mathrm{F}(\mathrm{U})$
- If $F(U)$ is strictly increasing
- Wenn $\mathrm{F}(\mathrm{U})$ eine monoton steigende Funktion ist - In other words: if $\mathrm{F}^{\prime}(\mathrm{U})>0$ for all U
- Example:
$\square F(U)=U^{2}$
$\square F^{\prime}(U)=2 U$

Utility from the Consumption of Goods

- n goods $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$, with x representing the quantity of each good
- A utility function....
- utility $=\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$???
- utility $=\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right.$; other things)
- What allows us to simplify from "other things"?
- The ceteris paribus assumption
- utility $=\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$!
- Notation throughout the book if only two goods are considered:

$$
\square \text { utility }=\mathrm{U}(\mathrm{x}, \mathrm{y})
$$

Towards an indifference curve...

- Basic assumption: "goods are good"!
- Non-satiation
- Plausible?
- Graph on the blackboard (Figure 3.1 in the book on page 73)
- What does this imply for the indifference curve?
- [Indifferenzkurve, Isonutzenlinie]
- [definition: an indifference curve shows a set of consumption bundles among which the individual is indifferent]
- The indifference curves slopes down!
- (can it be horizontal?)

Indifference curves

- The indifference curve displays the willingness of individuals to trade products against each other...
- Graph on the blackboard (Figure 3.2 in the book on page 74)
- Slope $=$ negative (goods are good....)
- Slope is increasing ("-" \rightarrow " 0 ")
- Or decreasing in absolute terms: "it is getting flatter"
- Is that plausible? Try to defend this slope verbally!
- Marginal Rate of Substitution
- (Grenzrate der Substitution)

$$
\mathrm{MRS}_{\mathrm{yx}}=-\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{U}=\mathrm{U}_{1}}
$$

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Indifference curves

- How many indifference curves are there?
- Graph on the blackboard (Figure 3.3 on page 75)
- Can indifference curves intersect?
- Graph on the blackboard (Figure 3.4 on page 76)

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Indifference curves

- Is this plausible?
- Think about cake and olives..
- What's about bread and beer?
- The strict convexity of the indifference curve is an assumption
- As is its negative slope
- As is the fact that is has no kinks (it is "differentiable")
- Assumptions of convexity and no kinks are made for technical reasons - as we will see later we don't have clearly defined demand curves otherwise
- Show overhead on utility functions

Indifference curves

- An alternative way to describe a diminishing MRS:
- All points which are preferred to an indifference curve form a convex set
- \approx
- The indifference curve is strictly convex to the origin
- \approx
- Any line which combines two points on the indifference curve is in the convex set
- \approx
- $\mathrm{U}\left(\lambda\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+(1-\lambda)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)>\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{U}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
- Graph on the blackboard (Figure 3.5 on page 77)

Mirroeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Indifference curves

- We had a graphical and a verbal explanation of the MRS:

$$
\mathrm{MRS}_{\mathrm{yx}}=-\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{U}=\mathrm{U}_{1}}
$$

- We now derive the MRS mathematically (on the blackboard, formulas 3.16 and 3.17 in the book, page 80)

$$
\mathrm{MRS}_{\mathrm{yx}}=-\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{U}=\mathrm{U}_{1}}=\frac{\partial U / \partial x}{\partial U / \partial y}
$$

Microconomics, HU WS 2006/07, Sheets 1, H. Grethe

Indifference curves

- Is this logical?

$$
\operatorname{MRS}_{\mathrm{yx}}=-\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{U}=\mathrm{U}_{1}}=\frac{\partial \mathrm{U} / \partial \mathrm{x}}{\partial \mathrm{U} / \partial y}
$$

- If the marginal utility of x is twice as high as of y, how much y would you give for an x ?

Indifference curves

Examples of Utility Functions

- Cobb-Douglas utility function:
- $U(x, y)=x^{\alpha} y^{\beta}$
- How do the indifference curves look like?
- What is the $\mathrm{MRS}_{\mathrm{yx}}$?

$$
\mathrm{MRS}_{\mathrm{yx}}=-\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{U}=\mathrm{U}_{1}}=\frac{\partial U / \partial x}{\partial U / \partial y}
$$

- Find on the blackboard:

$$
\operatorname{MRS}_{\mathrm{yx}}=\frac{\alpha}{\beta} \frac{y}{x}
$$

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Examples of Utility Functions

- Perfect substitutes:
- $\mathrm{U}(\mathrm{x}, \mathrm{y})=\alpha \mathrm{x}+\beta \mathrm{y}$
- What is the $\mathrm{MRS}_{\mathrm{yx}}$? $\square \alpha / \beta$
- MRS is a constant
- How does this graph? On the blackboard
- Examples?
- Fuel from Shell or Esso?

Examples of Utility Functions

- Cobb-Douglas utility function - how does this graph?

$$
\operatorname{MRS}_{\mathrm{yx}}=\frac{\alpha}{\beta} \frac{y}{x}
$$

- On the blackboard (Figure 3.8(a), page 83)
- Diminishing MRS
- Multiplicative link of arguments: if one product is zero, utility is zero
- $\alpha \beta$ are weighting factors

Examples of Utility Functions

- Perfect complements:
- $U(x, y)=\min (\alpha x, \beta y)$
- Goods only provide utility in combination
- The scarce good determines the utility level
- Graph on blackboard
- How does this graph? On the blackboard
- Examples?
- Left and right shoes
- $\mathrm{U}=\min (1 \mathrm{~L}, 1 \mathrm{R})$
- 4 left shoes and no right one: utility zero

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Examples of Utility Functions

- CES (constant elasticity of substitution) utility function:

$$
\mathrm{U}(\mathrm{x}, \mathrm{y})=\frac{\alpha x^{\delta}}{\delta}+\frac{\beta y^{\delta}}{\delta}
$$

- A more general functional form, which allows for the depiction of the CD case as well as perfect substitutes and complements.
- Derive MRS on the blackboard $\operatorname{MRS}_{\mathrm{yx}}=\frac{\alpha}{\beta}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)^{(\delta-1)}$
- With $\sigma=$ elasticity of substitution $=1 /(1-\delta)$

Microeconomics, HU WS 2006/07, Sheets 1, H. Grethe

Examples of Utility Functions

- CES utility function:
- Derive MRS for $\delta=1, \delta=0, \delta=-\infty$
- Have fun with a few alternative indifference curves on the blackboard (Varian, Figures 3.5-3.7)
- Homotheticy:
- $\mathrm{MRS}_{\mathrm{yx}}$ only depends on the ratio y / x, not on the level of y and x
- Show this on the blackboard
- Show that the CD function is homothetic on the blackboard (example 3.3 in the book on page 86)

